Neues Papier zeigt, Architektur entscheidet über Zuverlässigkeit von Agentic AI

arXiv – cs.AI Original ≈1 Min. Lesezeit
Anzeige

Ein kürzlich veröffentlichtes arXiv‑Paper (2512.09458v1) legt dar, dass die Zuverlässigkeit von Agentic und generativer KI in erster Linie von ihrer Architektur abhängt. Der Autor definiert Agentic Systeme als zielgerichtete, tool‑nutzende Entscheidungsfinder, die in geschlossenen Schleifen arbeiten, und zeigt auf, wie sich Verlässlichkeit aus einer klaren Komponenten‑Aufteilung und kontrollierten Schnittstellen ergibt.

Die vorgeschlagene Architektur gliedert sich in zentrale Bausteine wie einen Zielmanager, Planer, Tool‑Router, Ausführungsmechanismus, Speicher, Verifikatoren, Sicherheitsmonitor und Telemetrie. Durch schema‑konforme, validierte und privilegienreduzierte Tool‑Aufrufe sowie durch explizite Kontroll- und Assurance‑Schleifen entsteht ein robustes System, das Fehler frühzeitig erkennt und korrigiert.

Darüber hinaus präsentiert das Papier eine praktische Taxonomie von Agenten: tool‑nutzende, speicher‑augmentierte, planende und selbstverbessernde Agenten, Multi‑Agenten‑Systeme sowie eingebettete oder webbasierte Agenten. Für jede dieser Kategorien werden die Auswirkungen auf den Zuverlässigkeitsbereich und die Fehlermuster analysiert. Abschließend werden konkrete Designrichtlinien vorgestellt, darunter typisierte Schemata, Idempotenz, Berechtigungsmanagement, transaktionale Semantik, Speicher‑Provenienz, Laufzeit‑Governance (Budget‑ und Terminierungsbedingungen) sowie Simulations‑vor‑Ausführung‑Sicherheitsmechanismen.

Ähnliche Artikel