Neuer Ansatz: Schätzung optimaler Werte für Binärvariablen-Optimierung

arXiv – cs.LG Original ≈1 Min. Lesezeit
Anzeige

Ein neues arXiv-Posting (ID 2511.02048v1) präsentiert einen innovativen Ansatz zur Lösung von Optimierungsproblemen mit binären Variablen.

Der vorgeschlagene Solver maximiert eine reelle Zielgröße, indem er die optimalen Werte von Teilproblemen aus der zugrunde liegenden Verteilung der Ziele und ihrer jeweiligen Unterinstanzen schätzt.

Die Trainingsphase nutzt eine spezielle Ungleichung, die es erlaubt, die erwartete Gesamtabweichung vom Optimalzustand als Verlustfunktion einzusetzen, anstatt die eigentliche Zielfunktion zu berechnen. Dadurch entfällt die Notwendigkeit, Policy‑Werte zu bestimmen oder bereits gelöste Instanzen zu verwenden.

Ähnliche Artikel