A Physics-informed Multi-resolution Neural Operator
Anzeige
Ähnliche Artikel
arXiv – cs.LG
•
Scaling Laws Meet Model Architecture: Toward Inference-Efficient LLMs
arXiv – cs.LG
•
Operator Flow Matching for Timeseries Forecasting
arXiv – cs.LG
•
PO-CKAN:Physics Informed Deep Operator Kolmogorov Arnold Networks with Chunk Rational Structure
arXiv – cs.LG
•
Rethinking Nonlinearity: Trainable Gaussian Mixture Modules for Modern Neural Architectures
arXiv – cs.AI
•
Lang-PINN: Von natürlicher Sprache zu physikinformierten neuronalen Netzen
arXiv – cs.LG
•
Understanding and Enhancing Mask-Based Pretraining towards Universal Representations