Mehrere LLM-Agenten mit Retrieval und Argumentation verbessern Vorhersagen
In einer neuen Studie auf arXiv wird ein innovatives Multi‑Agenten‑Framework vorgestellt, das die Genauigkeit von Vorhersagen, die auf menschlichem Urteilsvermögen basieren, deutlich steigert. Das Konzept basiert auf der Idee, dass verschiedene Agenten unterschiedliche Sichtweisen zu einer Behauptung einbringen und dabei konkrete Belege für und gegen die Behauptung liefern.
Die Autoren nutzen quantitative bipolare Argumentationsrahmen (QBAFs), um die Argumente zu strukturieren. Drei Agentenarten werden implementiert: ArgLLM‑Agenten, die bereits existierende Ansätze zur Erzeugung und Bewertung von QBAFs nutzen; RbAM‑Agenten, die mithilfe von Relation‑basiertem Argument Mining aus externen Quellen Argumente generieren; und RAG‑ArgLLM‑Agenten, die ArgLLM mit Retrieval‑Augmented Generation kombinieren, um zusätzliche Argumente aus externen Datenbanken zu ziehen.
Durch Experimente mit zwei Standard‑Datensätzen für judgmental forecasting zeigen die Forscher, dass die Kombination von Belegen aus mehreren Agenten die Vorhersagegenauigkeit verbessert, insbesondere wenn drei Agenten eingesetzt werden. Gleichzeitig liefert das System eine nachvollziehbare Kombination von Belegen, die die Überprüfung der Behauptung unterstützt.