In-the-Flow Agentic System Optimization for Effective Planning and Tool Use
Anzeige
Ähnliche Artikel
MarkTechPost
•
Stanford Researchers Released AgentFlow: In-the-Flow Reinforcement Learning RL for Modular, Tool-Using AI Agents
arXiv – cs.LG
•
Guiding Exploration in Reinforcement Learning Through LLM-Augmented Observations
arXiv – cs.LG
•
Shorter but not Worse: Frugal Reasoning via Easy Samples as Length Regularizers in Math RLVR
arXiv – cs.LG
•
Neues RL-Framework GIFT vereint GRPO, DPO und UNA für bessere LLM‑Ausrichtung
arXiv – cs.AI
•
OPTAGENT: Optimizing Multi-Agent LLM Interactions Through Verbal Reinforcement Learning for Enhanced Reasoning
arXiv – cs.LG
•
Rewarding the Journey, Not Just the Destination: A Composite Path and Answer Self-Scoring Reward Mechanism for Test-Time Reinforcement Learning