SAGE: Streaming Agreement-Driven Gradient Sketches for Representative Subset Selection
Anzeige
Ähnliche Artikel
arXiv – cs.LG
•
Pruning Cannot Hurt Robustness: Certified Trade-offs in Reinforcement Learning
Analytics Vidhya
•
Effizientes Agentic AI-Training: Weniger Daten, mehr Intelligenz
arXiv – cs.LG
•
SSM-Modelle schrumpfen im Training: Schnellere Optimierung ohne Leistungseinbußen
arXiv – cs.AI
•
Steerable Adversarial Scenario Generation through Test-Time Preference Alignment
arXiv – cs.AI
•
(P)rior(D)yna(F)low: A Priori Dynamic Workflow Construction via Multi-Agent Collaboration
arXiv – cs.AI
•
Enhancing LLM Efficiency: Targeted Pruning for Prefill-Decode Disaggregation in Inference