A Federated Fine-Tuning Paradigm of Foundation Models in Heterogenous Wireless Networks
Anzeige
Ähnliche Artikel
arXiv – cs.LG
•
Neues Konzept: Asymmetrische LoRA-Strategien verbessern LLM-Fine‑Tuning
arXiv – cs.AI
•
FediLoRA: Heterogeneous LoRA for Federated Multimodal Fine-tuning under Missing Modalities
arXiv – cs.AI
•
Efficiency vs. Alignment: Investigating Safety and Fairness Risks in Parameter-Efficient Fine-Tuning of LLMs
arXiv – cs.LG
•
RobustFSM: Federated Submodular Maximization schützt vor böswilligen Clients
arXiv – cs.AI
•
Accurate Target Privacy Preserving Federated Learning Balancing Fairness and Utility
arXiv – cs.LG
•
ScaLoRA: Optimally Scaled Low-Rank Adaptation for Efficient High-Rank Fine-Tuning