AR$^2$: Adversarial Reinforcement Learning for Abstract Reasoning in Large Language Models
Anzeige
Ähnliche Artikel
arXiv – cs.LG
•
CudaForge: An Agent Framework with Hardware Feedback for CUDA Kernel Optimization
arXiv – cs.AI
•
GraphChain: Large Language Models for Large-scale Graph Analysis via Tool Chaining
arXiv – cs.AI
•
CoDA: Agentic Systems for Collaborative Data Visualization
arXiv – cs.AI
•
Adaptive Test‑Time‑Reasoning mit zweiphasiger Suche steigert Genauigkeit und Effizienz
Simon Willison – Blog
•
Designing agentic loops
MarkTechPost
•
Meta FAIR Released Code World Model (CWM): A 32-Billion-Parameter Open-Weights LLM, to Advance Research on Code Generation with World Models