QAgent: LLM-gesteuertes Multi-Agent-System automatisiert OpenQASM-Programmierung

arXiv – cs.AI Original ≈1 Min. Lesezeit
Anzeige

Die neuesten Entwicklungen bei Noisy Intermediate-Scale Quantum (NISQ)-Geräten zeigen, dass Quantencomputer bereits bei klassischen Problemen Vorteile bieten, von Physiksimulationen bis hin zu Gaussian Boson Sampling. Für Laien bleibt die Umsetzung dieser Vorteile jedoch schwierig, weil das Programmieren in Open Quantum Assembly Language (OpenQASM) komplex ist.

Während Large Language Model (LLM)-basierte Agenten bereits klassische Programmieraufgaben automatisieren, beschränken sich ihre quantenbezogenen Anwendungen bislang meist auf Spezialgebiete wie Quantenchemie oder Fehlerkorrektur. QAgent löst dieses Problem, indem es ein vollständig automatisiertes, LLM‑gestütztes Multi‑Agenten‑System für OpenQASM entwickelt.

QAgent kombiniert mehrere fortschrittliche Techniken: Aufgabenplanung, in‑Kontext‑Few‑Shot‑Learning, retrieval‑augmented generation (RAG) für langfristigen Kontext, vordefinierte Generierungswerkzeuge und Chain‑of‑Thought‑Reasoning. Durch diese Kombination verbessern die Agenten sowohl die Kompilierung als auch die funktionale Korrektheit des erzeugten QASM‑Codes systematisch.

Die Evaluation zeigt beeindruckende Ergebnisse: Im Vergleich zu statischen LLM‑Ansätzen steigert QAgent die Genauigkeit der QASM‑Code‑Generierung um 71,6 % – und das über mehrere LLM‑Modelle unterschiedlicher Größe hinweg. Dieses Multi‑Agenten‑System eröffnet einen wichtigen Schritt zur Demokratisierung der Quantenprogrammierung, reduziert die Expertise‑Lücke und beschleunigt die praktische Einführung von Quantencomputing.

Ähnliche Artikel