FLAegis: Zwei‑Schicht‑Verteidigung gegen Poisoning‑Angriffe Federated Learning

arXiv – cs.LG Original ≈2 Min. Lesezeit
Anzeige

Federated Learning (FL) hat sich als leistungsstarke Methode etabliert, um Machine‑Learning‑Modelle dezentral zu trainieren und gleichzeitig die Privatsphäre der zugrunde liegenden Daten zu schützen. Durch die verteilte Natur des Ansatzes bleibt der Trainingsprozess jedoch für die zentralen Server unsichtbar, was FL anfällig für böswillige Teilnehmer macht.

Die sogenannten Byzantine‑Clients können den Lernprozess manipulieren, indem sie falsche Modellupdates einsenden. Solche Angriffe, die von einfachen Label‑Flip‑Strategien bis zu adaptiven Optimierungs­angriffen reichen, führen zu Fehlklassifikationen und untergraben die Zuverlässigkeit des gesamten Systems.

Um diesem Risiko entgegenzuwirken, präsentiert die Studie das FLAegis‑Framework – eine zweistufige Verteidigungsarchitektur, die gezielt Byzantine‑Clients erkennt und die Robustheit von FL‑Systemen erhöht. Die erste Stufe nutzt die symbolische Zeitreihen‑Transformation (SAX), um die Unterschiede zwischen legitimen und schädlichen Modellen zu verstärken, und kombiniert sie mit spektraler Cluster‑Analyse, die eine präzise Erkennung von Angriffen ermöglicht.

Die zweite Stufe integriert eine robuste FFT‑basierte Aggregationsfunktion, die selbst bei Durchbruch der ersten Verteidigungsschicht die Auswirkungen von schädlichen Updates minimiert. Durch diese Kombination entsteht ein mehrschichtiges Schutzsystem, das sowohl die Erkennungsrate als auch die finale Modellqualität verbessert.

Die Leistung von FLAegis wurde anhand von fünf unterschiedlichen Poisoning‑Angriffen getestet – von einfachen Label‑Flip‑Methoden bis hin zu adaptiven, optimierungsbasierten Strategien. Im Vergleich zu aktuellen Verteidigungs­lösungen erzielte FLAegis eine höhere Erkennungs­präzision und behielt die Modellgenauigkeit auch unter starkem Angriffs­druck konstant hoch.

Die Ergebnisse zeigen, dass FLAegis einen bedeutenden Fortschritt in der sicheren Anwendung von Federated Learning darstellt und damit die Grundlage für vertrauenswürdige, dezentrale KI‑Systeme legt.

Ähnliche Artikel