LLMs mit Retrieval-Augmented Generation steigern Reiseprognosen auf 80,8 %
Eine neue Studie aus dem August 2025 zeigt, dass große Sprachmodelle (LLMs) in Kombination mit Retrieval-Augmented Generation (RAG) die Vorhersage von Reiseverkehren deutlich verbessern können. Im Fokus steht die Wahl des Verkehrsmittels – ein zentrales Thema für die Verkehrsplanung, das bisher von statistischen Modellen und klassischen Machine‑Learning‑Ansätzen mit starren Annahmen und begrenzter Kontextsensitivität geprägt war.
Die Forscher entwickelten ein modulares Framework, das RAG in LLM‑basierte Vorhersagen integriert. Dabei wurden vier Retrieval‑Strategien untersucht: die Basis‑RAG‑Methode, RAG mit ausgewogener Rückgriffsammlung, RAG mit einem Cross‑Encoder zur Neurangierung und die Kombination aus ausgewogenem Retrieval plus Cross‑Encoder. Diese Ansätze wurden auf drei unterschiedlichen LLM‑Architekturen getestet – OpenAI GPT‑4o, GPT‑4o‑mini und GPT‑3.
Die Experimente nutzten die 2023‑Daten der Puget‑Sound‑Regional Household Travel Survey. Die Ergebnisse zeigen, dass RAG die Genauigkeit der Vorhersagen für alle Modelle steigert. Besonders hervorzuheben ist die Kombination aus ausgewogenem Retrieval und Cross‑Encoder‑Re‑Ranking, die bei GPT‑4o eine Genauigkeit von 80,8 % erreichte – ein deutlicher Vorsprung gegenüber herkömmlichen statistischen und maschinellen Lernmodellen.
Darüber hinaus demonstrieren die LLM‑basierten Modelle eine überlegene Generalisierungsfähigkeit. Sie liefern konsistente Ergebnisse, wenn sie auf neue, nicht im Trainingsdatensatz enthaltene Situationen angewendet werden, was bei den traditionellen Modellen oft nicht der Fall ist. Diese Erkenntnisse unterstreichen die Bedeutung der Wechselwirkung zwischen der Rechenkraft der Modelle und den Retrieval‑Methoden.
Die Studie legt nahe, dass die Kombination aus großen Sprachmodellen und gezieltem Retrieval ein vielversprechender Ansatz für die Verkehrsplanung ist. Sie eröffnet neue Möglichkeiten, um Verkehrsentscheidungen präziser und kontextsensitiver zu prognostizieren und damit die Grundlage für effizientere und nachhaltigere Mobilitätsstrategien zu legen.