Auditierung von Multi-Agenten-LLM-Denkbäumen übertrifft Mehrheitsabstimmung In der Forschung zu Multi-Agenten-Systemen (MAS) wird die Rechenkraft großer Sprachmodelle (LLMs) häufig durch die Zusammenarbeit mehrerer Agenten erweitert. Dennoch setzen die meisten Ansätze noch immer auf eine einfache Mehrheitsabstimmung, um die einzelnen Agentenausgaben zu aggregieren. Diese Heuristik ignoriert jedoch die eigentliche Beweiskette der einzelnen Denkpfade und ist besonders anfällig, wenn die Agenten zu einer

arXiv – cs.AI Original
Anzeige