Tensor‑Train‑Modelle schützen Vorhersagen: Genauigkeit & Datenschutz

arXiv – cs.LG Original ≈2 Min. Lesezeit
Anzeige

In der klinischen Praxis muss maschinelles Lernen drei zentrale Ziele gleichzeitig erfüllen: hohe Vorhersagekraft, klare Interpretierbarkeit und strenge Datenschutzstandards. Traditionelle Modelle wie die logistische Regression (LR) bieten zwar Transparenz, sind jedoch anfällig für Angriffe, die sensible Trainingsdaten preisgeben. Tiefe neuronale Netze (NNs) liefern bessere Ergebnisse, bleiben aber ebenfalls nicht immun gegen Privatsphäre‑Risiken.

Um diese Gefahren zu quantifizieren, haben Forscher gezielte Angriffe entwickelt, die herausfinden, welche öffentlichen Datensätze zur Schulung eines Modells verwendet wurden. Die Tests wurden an LORIS – einem öffentlich zugänglichen LR‑Modell zur Vorhersage der Immuntherapie‑Antwort – sowie an mehreren flachen NN‑Modellen für dieselbe Aufgabe durchgeführt. Die Ergebnisse zeigen, dass beide Modelltypen erhebliche Mengen an Trainings‑Informationen preisgeben. Besonders in White‑Box‑Szenarien ist die LR extrem verletzlich, und die übliche Praxis der Kreuzvalidierung verschärft das Risiko zusätzlich.

Als Lösung schlagen die Autoren eine quantum‑inspirierte Verteidigung vor, die die diskretisierten Modelle in Tensor‑Train‑Strukturen (TTs) überführt. Diese Tensorisierung verschleiert sämtliche Parameter vollständig, während die Genauigkeit erhalten bleibt. White‑Box‑Angriffe werden auf reine Zufallsrate reduziert, und Black‑Box‑Angriffe erreichen eine Schutzstufe, die mit Differential Privacy vergleichbar ist. Gleichzeitig bleibt die Interpretierbarkeit erhalten und wird sogar erweitert, da TTs effiziente Berechnungen von Rand- und bedingten Verteilungen ermöglichen – ein Vorteil, der auch für neuronale Netze nutzbar ist.

Die Studie demonstriert, dass Tensor‑Train‑Modelle breit einsetzbar sind und eine solide Grundlage für private, interpretierbare und leistungsfähige klinische Vorhersagen bilden. Diese Technologie könnte künftig die Sicherheit und Transparenz von medizinischen Entscheidungs‑Tools erheblich verbessern.

Ähnliche Artikel