AIE4ML: End-to-End-Framework für KI-Modelle auf AMDs Versal AI Engine
AMD hat mit AIE4ML ein wegweisendes Framework vorgestellt, das neuronale Netzwerke automatisch in optimierten Firmware-Code für die nächste Generation der Versal AI Engine (AIE) übersetzt. Durch die Nutzung der VLIW-Ausführung, der expliziten Datenpfade und des lokalen Speichermanagements ermöglicht AIE4ML eine nahezu architektonisch maximale Leistung auf einzelnen Kernen.
Das System geht über die bisherigen Optimierungen einzelner AIE‑Kerne hinaus und bietet eine strukturierte Parallelisierung, die sich über das gesamte 2‑D‑Array der AIE‑ML‑Fabric erstreckt. Dadurch bleiben sämtliche Daten während der gesamten Modellausführung vollständig on‑chip, was Latenz reduziert und die Energieeffizienz steigert.
Ein Highlight ist die effiziente Implementierung linearer Schichten, die Bias‑Addition und ReLU‑Aktivierung direkt in den Kern integrieren. Durch einen neuartigen Graph‑Placement‑Algorithmus werden mehrschichtige Modelle deterministisch, kompakt und topologieoptimiert auf das physische 2‑D‑Raster des Geräts abgebildet.
Darüber hinaus akzeptiert AIE4ML quantisierte Modelle aus gängigen High‑Level‑Tools wie hls4ml oder PyTorch und garantiert dabei bit‑exakte Ergebnisse. In Benchmarks zur Layer‑Skalierung erreicht das Framework bis zu 98,6 % der Effizienz des Einzelkern‑Baselines, wobei 296 von 304 AIE‑Tiles vollständig ausgelastet werden.