Erklärbares RLHF: Trainingdaten finden, Fehler korrigieren

arXiv – cs.LG Original ≈1 Min. Lesezeit
Anzeige

In der jüngsten Veröffentlichung auf arXiv (2512.13837v1) wird ein innovativer Ansatz vorgestellt, der die Qualität von Reinforcement Learning mit menschlichem Feedback (RLHF) für Sprachmodelle deutlich steigert. Trotz der weitreichenden Anwendung von RLHF bleiben viele Antworten unbefriedigend – ein Problem, das die Autoren gezielt angehen.

Der erste Teil der Arbeit liefert ein post-hoc-Erklärungsverfahren, das genau ermittelt, welche Trainingsdaten für ein unerwünschtes Ergebnis verantwortlich sind. Das Problem wird als kombinatorische Optimierung mit einer Konstraint formuliert: Man sucht die Trainingsbeispiele, die dem Prompt‑Antwort‑Paar am nächsten liegen und gleichzeitig das Paar als konvexe Kombination dieser Beispiele darstellen können. Durch einen effizienten iterativen Auswahlalgorithmus lässt sich die optimale Datenmenge bestimmen.

Im zweiten Teil folgt ein Unlearning‑Mechanismus, der die identifizierten problematischen Daten aus dem Modell entfernt. Dadurch werden die fehlerhaften Antworten verbessert, während die Qualität der übrigen, bereits zufriedenstellenden Antworten weitgehend erhalten bleibt. Der Ansatz kombiniert also gezielte Erklärung mit gezieltem Entfernen von fehlerhaften Trainingsbeispielen.

Experimentelle Ergebnisse zeigen, dass dieser zweistufige Prozess die Leistung von RLHF-Modellen signifikant erhöht. Die Autoren demonstrieren, dass die Methode nicht nur die Fehlerquote senkt, sondern auch die Konsistenz und Zuverlässigkeit der generierten Antworten verbessert – ein wichtiger Schritt hin zu besser ausgerichteten Sprachmodellen.

Ähnliche Artikel