BERT feinabgestimmt: Universitäts-Quiz-System liefert präzise Antworten

arXiv – cs.AI Original ≈1 Min. Lesezeit
Anzeige

In einer neuen Studie wurde ein Chatbot für das Department of Electronic and Computer Engineering der University of Limerick entwickelt, der Studierenden gezielte Kursinformationen liefert. Dabei wurde ein maßgeschneidertes Datenset mit 1 203 Frage‑Antwort‑Paaren im SQuAD‑Format erstellt, das sowohl manuell als auch synthetisch generierte Einträge aus dem Modulhandbuch der Universität enthält.

Der Basis‑BERT‑Modell (Devlin et al., 2019) wurde mit PyTorch feinabgestimmt und anhand von Exact‑Match‑ und F1‑Scores bewertet. Die Ergebnisse zeigen, dass schon ein moderates Fine‑Tuning die Hypothesenbildung und das Wissens‑Extraktionsvermögen deutlich verbessert. Damit wird demonstriert, dass Foundation‑Modelle erfolgreich an spezifische Bildungsdomänen angepasst werden können.

Während bereits domänenspezifische Varianten wie BioBERT und SciBERT für biomedizinische bzw. wissenschaftliche Literatur existieren, fehlt bislang ein Modell, das auf Universitäts‑Kursmaterialien zugeschnitten ist. Diese Arbeit schließt diese Lücke, indem sie beweist, dass BERT mit akademischen QA‑Paaren effektiv trainiert werden kann. Das Ergebnis ist ein erster Schritt hin zu skalierbaren, autonomen Wissenssystemen für Hochschulen.

Ähnliche Artikel